
62

Abstract
The problem addressed in this paper is the execution of
XML queries over a large collection of XML documents.
This paper concentrates on how to develop the necessary
infrastructure to effectively manipulate XML data and it
proposes a data structure, named XML Schema Directory
(XSD), as an access means to XML repositories. The aim
of XSD is to accelerate query processing by quickly
finding the relevant set of XML documents for a given
query. This is obtained by considering only a small
number of relative XML schemata and consequently a
limiting number of XML documents, rather than the entire
corpus of XML documents. XML schema similarity is
introduced as a way to determine the relevance among
XML documents, which belong to the same knowledge
category. The proposed algorithms for maintaining the
XSD structure do not require reorganisation and they may
be efficiently used in practice. An alternative advantage of
XSD structure is that it may also be used as a method for
facilitating browsing.

1 Introduction.
In the last few years, there has been an increasing

interest in managing semi-structured data [6, 1, 7, 18].
Techniques for extracting structured information from
semi-structured data have been for long the main theme of
research endeavors [3, 2, 17, 4]. The recent emergence of
the eXtensible Markup Language (XML) [9] as a standard
for data representation and exchange on the World Wide
Web has attracted the interest of many researchers who
observed a resemblance between semi-structured models
and XML. Literally, XML data sources (documents) may
be viewed as entities whose structure is not fixed and
regular and both the data described and the structure itself
are blurred. It is expected that much of the data encoded in
XML will be semi-structured and they will be irregular or
incomplete and their structure will change rapidly and
unpredictably.

∗ This research was done while the first author was visiting the Federal
Institute of Technology ETH-Zurich from Jun. ’99 to Feb. ’00 and it was
partially supported by the Swiss Federal Foundation of Technology and by the
fellowship program of the European Research Consortium for Informatics and
Mathematics (ERCIM).

As more and more information is either stored,
exchanged in XML, or presented as XML through various
interfaces, the ability to intelligently query XML data
sources becomes increasingly important. Toward this
objective, several XML query languages have been
proposed [8]. The realization of a query system is mainly
accomplished through a query engine, which accepts XML
queries, executes them on a predefined set of XML
sources and finally it returns the result set. Querying
intelligently XML sources requires a query language that
supports many and different forms of processing. For
instance, it is desirable to have a single XML query
language that allows view definitions, query execution,
item identification through Xpointer and XSL pattern
evaluation. Although, supporting different domains is
important, the languages that provide all the kinds of
sophistication are expected not to be trivial since the
relationships found in an XML document can be fairly
difficult.

The main role of an XML query language is to allow
the formulation of queries and determine the result set of
the XML elements that should be returned. Although, all
of the proposed query languages address the problem of
query formulation, they assume that the input to such a
query is a set of known documents or nodes within
multiple documents. In other words, to execute an XML
query, the query engine should be supplied with (1) the
query string and (2) the URL data sources on which the
query will perform.

In large corpus, which may consist of tens of thousands
of XML documents with diverse schemata, the input
documents may be not known in advance. In this case
executing the XML query over the whole corpus may slow
down the query answering process. It is then obvious that
if the input documents are not known in advance, an
indexing structure is required to alleviate the answering
process by restricting the search space to a few documents
which actually contains the desired data. Then these
documents may be used as the input to the XML query.

Limiting the search space of a query means finding the
most relevant XML documents to the query. This implies
dividing the initial search space of the query into two
disjoint sets; one containing those documents which are
relevant to the query and the other containing those

XML Schema Directory: A Data Structure for XML Data Processing∗

First International Conference on Web Information Systems Engineering (WISE’00),
Proceedings, pp 62-69, June 19-21, 2000, Hong Kong, China, IEEE CS Press

Evangelos Kotsakis
VTT Information Technology, P.O. Box.

1201, VTT ESPOO, Finland,
 kotsakis@acm.org

Klemens Böhm
Institute of Information Systems, Swiss Federal

Institute of Technology, Zurich, Switzerland
boehm@inf.ethz.ch

0-7695-0577-5/00 $10.00 ������

63

documents, which are not. Therefore, the purpose of an
XML indexing structure would be to partition the initial
set of documents into relevant and not relevant and to
supply the XML query engine with those XML documents
that are relevant to the query.

This paper proposes a data structure, named XML
Schema Directory (XSD), whose purpose is to quickly
find the relevant set of XML documents to a given query.
Moreover, XSD may be used to support content-based
search on large collections of XML documents. The idea is
to aggregate similar XML schemata into a merger schema.
The merger schema represents a general class that contains
all those XML documents of the original schemata. As
long as a schema becomes part of the class, all the XML
documents of the schema will be considered instances of
the merger schema.

The rest of this paper is organized as follows: section 2
presents related work, section 3 discusses XML schemata
and XML query evaluation, it also presents how a merger
schema can be obtained. Similarity between XML
schemata is discussed in section 4. Section 5 presents the
XML Schema Directory (XSD) structure along with the
algorithms for maintaining this structure. Section 6
presents how path queries may be evaluated by using the
XSD structure and section 7 discusses some concluding
remarks.

2 Related work
A collection of XML documents can be seen as a

collection of objects. Finding relevant objects in a given
set has been for many years the main research effort of
information retrieval community [10, 5, 22, 21, 13, 11,
14].

In a traditional text information retrieval system, each
document is segmented into significant terms (words) and
a structure (known as inverted index) is generated that
indicates what term occurred in what document as well as
term frequency, term weight and possibly position data. A
user query, in such a system, consists of a set of terms and
it may be literally viewed as a document. The information
retrieval system retrieves those documents that are
considered close to the query. Certain similarity or
dissimilarity (distance) measures have been invented to
estimate proximity between a query and a document [20].
Although, numerous techniques exist to identify relevant
documents [11], their effectiveness in terms of precision
and recall is not adequate and consequently they are not
appropriate for use in an XML repository. The proposed
XSD structure guarantees 100% accuracy. This means that
no non-relevant XML document will be selected (100%
precision) and all of the relevant documents will be
selected (100% recall).

Collections of semi-structured sources have been
proposed as the basis for improving query handling and
indexing in [4]. However, this approach is directed to
classifying semi-structured sources by using a given set of

classes, which are represented by structural expressions.
That is, a predefined set of classes should be supplied
before classifying the semi-structured objects. In practice,
it is difficult and sometimes unlikely to have the definition
of such generic classes that capture abstract types whose
realization could be found in semi-structured sources and
therefore it is difficult to specify in advance class
structural expressions. Constructing collections of semi-
structured objects is also presented in [17] through
approximate typing. Approximate typing assumes that
each single object is of a unique type and then elimination
of types is accomplished by checking for equivalence
among the initial types. In [4, 17] the resulting
organizations are approximate types that are aimed to
describe semi-structured objects.

XSD approach is aimed to be used for organizing
semi-structured schemata (not semi-structured objects) in a
hierarchical way and it may be viewed as a meta-schema
organization. XSD approach is based on clustering XML
schemata rather than on classifying semi-structured
sources such as XML documents and therefore it does not
require the preexistence of generic classes. It generates
meta-classes (merger schemata) in a dynamic way from
the basic semi-structured schemata. Semi-structured
sources of a basic schema become members of the meta-
classes. XSD serves two purposes: (1) it is an indexing
structure that XML queries may use to find the most
relevant XML documents in a large XML repository, (2) it
is an organization for XML schemata which allows similar
schemata to be placed in the same cluster. A cluster (or
merger schema) may be viewed as a generic schema that
encompasses many basic specialized schemata. XSD is a
meta-schema organization, which organizes several XML
schemata into a tree-like structure. It is different from that
in [2, 15, 17, 4] at the level of organizing information; it is
a construction that classifies XML schemata. However, the
methods in [2, 15, 17, 4] may be used to extract basic
schemata and then XSD may be applied to cluster these
schemata. Therefore, under this perspective, XSD may act
as a complement to the proposed techniques aiming to
optimize queries that are targeted on large XML
collections.

3 XML schema and query evaluation

An XML schema identifies the structure of the XML
documents. XML 1.0 [9] supplies a mechanism, the
Document Type Definition (DTD) for defining XML
schemata. A DTD specifies what elements may occur and
how the elements may nest in an XML document that
conforms to the DTD. It serves two purposes: (1) it
describes the characteristics of XML elements and (2) it
declares constraints on the use of mark-up. When a DTD
is not supplied the XML documents are self-describing
and they may be viewed as semi-structured sources. That
is, the XML document is combined from data whose

64

structure is not regular and its schema is contained within
the data.

An XML document may be interpreted literally or
semantically [12]. In the semantic mode, the XML
document is represented as a graph that includes semantic
relationships between XML elements. This is supported by
the current XML version by assigning special meaning to
some attributes. Attributes like ID and IDREF can be used
to define relationships between XML elements. In the
literal mode, an XML document is represented as a tree.
There are no attributes with semantic interpretations. In
this paper, XML documents are viewed literally and all
kinds of attributes are visible as textual strings. It is also
assumed well-formed XML, which place no restrictions on
tags, attribute names or nesting patterns.

When DTDs are not available a dynamic schema such
as a DataGuide [15] may be used to obtain a basic schema
out of an XML document. DataGuides are dynamic
schemata generated from semi-structured data sources
describing every unique label path of the source once. In
general, an XML basic schema is a tree-like structure,
whose nodes are the labels (element names) found in an
XML document and an edge from label a to b represents a
parent/child relationship between a and b. A label is
identified from the label path, which starts from the root
and terminates at the label. Each label path appears in the
tree at most once.

DTD XML document
<!DOCTYPE Portfolio [
<!ELEMENT Portfolio (Stock*)>
<!ELEMENT
Stock(Name,Last,Volume,Change,
Day_Range,Year_Range)>
<!ATTLIST Stock
 Market CDATA #IMPLIED
 Ticker CDATA #IMPLIED>
<!ELEMENT Name (#PCDATA)>
<!ELEMENT Last (#PCDATA)>
<!ELEMENT Volume (#PCDATA)>
<!ELEMENT Change (#PCDATA)>
<!ELEMENT Day_Range
(DMin,DMax)>
<!ELEMENT DMin (#PCDATA)>
<!ELEMENT DMax (#PCDATA)>
<!ELEMENT Year_Range
(YMin,YMax)>
<!ELEMENT YMin (#PCDATA)>
<!ELEMENT YMax (#PCDATA)>
]>

<Portfolio>
 <Stock Market=" " Ticker="^DJI">
 <Name> DJ INDU AVERAGE </Name>
 <Last> 10430.88 </Last>
 <Volume> N/A </Volume>
 <Change> -2.00% </Change>
 <Day_Range> <DMin> 10356.96 </DMin>
 <DMax> 10638.64 </DMax>
 </Day_Range>
 <Year_Range> <YMin> 9099.04 </YMin>
 <YMax> 11750.28 </YMax>
 </Year_Range>
 </Stock>
 <Stock Market="OSA" Ticker="^N225">
 <Name> NIKKEI 225 INDEX </Name>
 <Last> 19791.40 </Last>
 <Volume> N/A </Volume>
 <Change> +0.98% </Change>
 <Day_Range> <DMin> 19518.08 </DMin>
 <DMax> 19803.69 </DMax>
 </Day_Range>
 <Year_Range> <YMin> 18068.10 </YMin>
 <YMax> 20046.14 </YMax>
 </Year_Range>
 </Stock>
</Portfolio>

(a)

(b)

Figure 1: Example of XML Data (a) DTD and XML
document (b) basic XML Schema

Figure 1(b) shows the basic XML schema obtained
from either the DTD or the XML document in Figure 1(a).
The basic XML schema may be seen as the type of an
XML document. If the DTD is available, it is
straightforward to derive the basic XML schema from the
DTD. In case the DTD is not available the basic XML
schema may be constructed from the XML document in a
similar way as a DataGuide is formed. Using an XML
schema, we are able to check whether a given label or
label path exists. This is very important to query
evaluation. An XML query is a path expression that can
reach to arbitrary depths in the XML data. The result set of
a path query on an XML document is the set of those
elements that match the query. If for instance, a path
expression is an ordered set of XML elements of the form
e1/e2/e3, it returns all elements e3 for which there exist
element e1 containing e2 and e2 containing e3. An XML
query is relative to a document if it can match the
document schema. If a path query matches one or more
paths in the XML schema, then it is considered that it
matches the schema. When an XML query matches a
schema, all the XML documents derived from this schema
are relative to the query.

3.1 Example 1: schema matching
 Let us consider the following simple XML query

expressed in XQL [19], which requests the stock names of
those stocks with a day minimum grater than 10000.

/Portfolio/Stock/Name[/Portfolio/Stock//DMin > 10000]
Executing the above query on the XML document in
Figure 1(a) with an XQL compliant query engine, it yields
the following result:

<Name> DJ INDU AVERAGE </Name>
<Name> NIKKEI 225 INDEX </Name>

The XQL query above may graphically depicted as shown
in Figure 2. Dashed edges show that the child node may be
arbitrary found in any level bellow the parent node.

Figure 2: XML path query.

By matching a given query against each given schema,
we can find out which of those schemata are relevant to
the query and consequently consider all XML documents
derived from these schemata to be the input to the query.
This is a straightforward way to find relevant XML
documents to a given query in a large XML repository,
which encompasses numerous schemata. However,
matching exhaustively the query against every single
schema in the repository may slow down the process of

Name Last Volume Change Day
Range

Year
 Range

DMin DMax YMin YMax

Stock

Portfolio
Name DMin

Stock

Portfolio

65

finding the input to the query. The next section introduces
the concept of merging XML schemata into more generic
schemata in order to solve the problem of exhaustive
matching.

3.2 Merger schema
A merger schema is a generic XML schema, which

combines two or more XML schemata. The introduction
of the concept of merger schema aims at limiting the initial
search space by merging basic XML schemata into more
general ones, which may then be used as matching targets
against XML queries. The merging process is
accomplished as follows:

Let A, B, be two basic schemata, and M be the resulting
merger schema. Let root(A) and root(B) be the root
elements of schemata A and B respectively. Let EA, EB and
EM be the multi-sets containing the elements of the
schemas A , B and M respectively. They are multi-sets
rather than sets since elements with the same label may
occur more than once in the schema. Let CM(em), CA(eA)
and CB(eB) be the sets containing the child nodes of the
element em ∈ EM, eA ∈ EA, and eB ∈ EB respectively. The
merger schema is built recursively by using the following
algorithm:

1. Set M equal to a temporary root element TE and then set A
to be the child of TE

2. Call the recursive routine Merge in step 3 by
Merge(TE,root(B))

3. Merge(em,eb){
//em, eb are elements in schemata M and B respectively
if eb is not in CM(em) then add eb in CM(em)
em = eb // em assigns the copy of eb in M
for each x in CB(eb) do Merge(em, x) }

TE is just an assisting element to realise the merging.
The resulting merger schema is the child of TE if both
basic schemata A and B have the same root label. In case
A and B have different root labels, TE is the parent label of
both root(A) and root(B) labels. In the discussion that
follows, we assume merging of basic schemata, which
have common root label. The merger schema contains
finally the union of elements of the basic schemata. To
ease the process of schema separation, which is discussed
in a following section, a reference number is introduced
for each schema element, which indicates how many times
the element has been referenced in the merger schema. For
instance, if an element E is common to two basic
schemata, then the merger schema will have a reference
number for this element equal to two. The following
example shows the merging of two basic schemata into a
generic one.

3.3 Example 2: constructing a merger schema

Let us consider the XML schema in Figure 3, which is
similar to that in Figure 1(b), although it has a different

structure. The schema in Figure 3 may have been
generated from the following XML document:

<Portfolio>
 <Stock Market="SAO" Ticker="^BVSP">
 <Name>BRSP BOVESPA IND</Name>
 <Last>18008.73</Last>
 <Volume>N/A</Volume>
 <Change>-0.57%</Change>
 <DMin>18008.73</DMin>
 <DMax>18297.38</DMax>
 <YMin>15349.78</YMin>
 <YMax>18885.84</YMax>
 </Stock>
</Portfolio>

Figure 3: XML schema similar to that in Figure 1(b)

The merger schema will be the one shown in Figure 4. The
merger schema keeps the structure of both basic schemata.
It could be seen as the union of the two basic schemata in
Figure 3, and Figure 1(b).

Figure 4: Merger XML schema of the basic schemata in
Figure 1(b) and Figure 3

The reference number of each element of the merger
schema is also shown on the nodes of the tree in Figure 4.
Those nodes that have reference number equal to 1 occur
only in one of the corresponding basic schemata. The
advantage of the merger schema is that, it is sensitive to
queries that are relevant to both basic schemata.
Considering again the query in example 1, we see that the
query matches both schemata and consequently it is
relevant to all the documents derived from these schemata.
The merger schema captures this and thus there is no need
to go through exhausting matching to find out the relevant
XML document to the query. What is actually needed in
this case is to match the query only against the merger
schema. In that way, we may substantially decrease the

Name Last Volume Change DMin DMax

YMin YMax

Stock

Portfolio

Name Last Volume Change

Day
Range

Year
 Range

DMin DMax YMin YMax

Stock

Portfolio

DMin

DMax

YMin YMax

2

2

2 2 22

1 1

1
1

1 1

1111

66

search effort for relevant XML documents. Although
using mergers to join XML schemata is promising, it may
not yield the expected gain if we do not consider carefully
what to merge. The basic schemata to be merged should be
as similar as possible. Merging similar XML schemata
offers an advantage since the resulting categories act as
meta-classes that organise the underlying XML documents
in separate knowledge categories, which may be used to
efficiently evaluate XML queries over large collections of
XML sources. Section 4 defines a measure for similarity
between XML schemata and discusses how it can be
estimated.

3.4 Schema separation
The Merge operation is used to join two relative XML

schemata. The schema separation procedure does exactly
the opposite. It separates from a merger schema a basic
schema. Separation operation is the complement of Merge
operation. That is, the sequence C= Merge (A, B),
Separate(C, B) has no effect at all and it results in two
basic schemata A and B. Let A be a merger schema and B
be a basic schema and let B be contained in A. The
operation Separate (A, B) is allowed only when A contains
B, which means that B is a sub-tree of A. The Separate (A,
B) operation is accomplished as follows:

1. For all those nodes in B that occur in A decrease the
reference number by one.

2. If the reference number is zero, then remove the node from A

Referring to the example 2, Let A be the merger schema in
Figure 4 and B be the schema in Figure 3, then Separate
(A, B) will result in the schema shown in Figure 1(b).

4 Similarity between XML schemata
Similarity is defined in terms of proximity, which is

based on the distance between XML schemata. The larger
the distance between two XML schemata, the more
dissimilar the XML schemata should be. An XML schema
is actually a tree and therefore the distance between
schemata should be based on tree differences. A
mathematical model for obtaining distance measures
between XML schemata is therefore discussed.

The distance between two XML schemata is based on
the edit operations that should be performed to one of
them in order to obtain the other. An edit operation on an
XML schema may be an insertion, a deletion or a
substitution of one node by another. Insertion is the
complement of deletion.

Insertion of a node x into an XML schema as a child
of node y may be accomplished so that the resulting XML
schema contains x as a child of y with no children or takes
as children some of the children of y. Let y1,…, yk be
children of y, then for some 0≤i≤j≤k, the children of y
in the resulting tree (after the insertion of x) will be

y1,…yi, x, ,yj,…, yk . If j=i+1, x has no children otherwise x
has children yi+1,…yj,

Deletion of a node x from the XML schema is
accomplished so that the father y of x takes all the children
of x. Let y1,…, yk be the children of y and x=yi, and let
x1,…, xj be children of x, then the children of y in the
resulting tree (after the deletion of x) will be y1,…, yi-1

x1,…, xj,yi+1,…, yk.
Substitution of a node x by a node y is accomplished

so that the children of y in the resulting XML schema are
the children of x in the original XML schema.

Any of the above elementary edit operations may be
represented as a general substitution of the form α→β,
which means α is replaced by β. In the case of the
substitution operation above, α and β represent two
distinct nodes. The deletion of a node α may be
represented as α→∅ (i.e. β=∅), where ∅ is the null node.
The insertion of the node β may be represented as ∅→β
(i.e. α=∅).

An editing operation α→β is associated with a cost
w(α→β). This cost can be different for different nodes.
For example editing a node, which is closer to the root
might have higher cost than editing a leaf node or vise
versa. In case that there is no distinction between nodes, a
universal editing weight for all nodes may be used.

The distance between two schemata T1 and T2 is
measured in terms of the number of editing operations
required to change T1 into T2 taking into account the cost
of each editing operation. The cost w to be a distance
metric should satisfy the following metric axioms [16, 23].

 i) w(α→β)≥0 and w(α→α)=0
 ii) w(α→β)=w(β→α)
 iii) w(α→γ)≤w(α→β)+w(β→γ)

Let iS be a sequence of editing operations

iikii sss ,,, 21 K that changes the XML schema T1 into T2.

The cost of performing all the operations in the editing
sequence is then given by

∑
=

=
ik

j
iji sSW

1

)(w)(

The distance between the schemata T1 and T2 is then
formally defined as

}T into T changing

 sequenceoperation editingan is |)(min{),(

21

21 ii SSWTTd =

Algorithms that estimate the above-defined distance
between trees is discussed in [23], which also presents a
dynamic algorithm that solves the minimum distance
problem in sequential time.

67

5 XML Schema Directory (XSD)
XSD is a hierarchical (tree-like) clustering structure

whose aggregation technique to cluster XML schemata is
based on schema merging. The objects used for clustering
are basic XML schemata. The motivation for constructing
such a clustering structure is that XML schemata relevant
to a path query tend to be more similar to each other than
irrelevant XML schemata and they may be clustered
together. XSD structure is mainly used to accelerate query
processing by considering only a small number of relative
XML schemata and consequently a limiting number of
XML documents, rather than the entire corpus of XML
documents. An alternative advantage of XSD structure is
that it may also be suggested as a method for facilitating
browsing.

XSD is a data structure, which is designed to ease the
process of finding relevant XML documents in a corpus
and it is mainly used as an access means to XML
repositories. Each non-leaf node entry in the directory
contains a merger schema and each leaf directory entry
point to the XML documents derived from the leaf

schema. A leaf node entry E has the form (S(E), X1(E), X2(E),
… , Xn(E)), where X1(E), X2(E), … , Xn(E) are pointers to
XML documents and S(E) is the schema whose instances
are pointed to by X1(E), X2(E), … , Xn(E). Every leaf node
may contain an arbitrary number of references (i.e. many
XML documents may be derived from the same XML
schema). A non-leaf node entry E has the form (S(E), X(E)),
where S(E) is a merger schema and X(E) is a pointer to a
node containing n schemata with m≤n≤M , where M and
m are the maximum and minimum numbers respectively
of the schemata that can be accommodated in an XSD
node. The relationship between m and M could be defined
as m≤M/2. It is worth noting that while the leaf nodes may
have an arbitrary number of pointers to XML documents,
the non-leaf nodes have a limited number of pointers to
child nodes. This is because the XSD structure is tuned to
organise XML schemata, rather than XML sources.
Limiting the number of child schemata between m and M
is done for performance purposes. For instance, small
values of M will create a deep XSD structure, whereas

large values of M may create a wide XSD structure. In
general, m and M may vary and different values may be
used in a way that increases the performance.

Figure 5 shows the structure of a typical XSD
organisation and illustrates the merger XML schemata as
entries of non-leaf nodes and basic schemata as entries of
leaf nodes. A basic XML schema is one that is obtained
directly from a DTD or an XML document.

In Figure 5 nodes N1, N2 and N3 contain merger
schemata entries and the leaf nodes N4, N5, N6, N7 and N8

contain XML basic schemata. For instance, the merger
schema S16 in Figure 5 may be the XML schema in Figure
4 and the child schemata S10 and S11 may be the basic
schemata in Figure 1(b) and Figure 3 respectively.

Two basic algorithms are proposed for maintaining the
XSD structure. One for inserting new XML schemata and
one for deleting XML schemata. The schemata allowed to
be inserted or deleted are basic XML schemata.

Figure 5: XSD Tree.

Insertion: inserts a new basic schema S into an XSD
structure whose root is T: Insert(T,S).
1. If T is not a leaf, check the similarity between the new

schema and each entry in T by measuring the distance
between the new schema and a schema entry of T.
The greater the distance is the less similar the new
schema is. The distance is measured as the number of
editing operations that should be performed to
transform one schema to the other.

2. Let schema W be the most similar entry of T to the
new schema, then invoke Insert (X(w), S), where X(W)

is the pointer to the child of W
3. If T is a leaf, then, check to see if there is room where

the new schema can be accommodated. If so, merge
the new schema with each single schema entry from
the leaf up to the root of the XSD and update all the
non-leaf nodes by merging each one with the new
schema. That is, the new schema is merged first with
the parent entry of the leaf, then with the grand father
and so on until the root of XSD.

1N

1S 2S 3S 4S 5S 6S 7S 8S 9S 10S 11S

12S 13S 14S 15S 16S

17S 18S

XML documents

XML
basic

schemata

XML
Merger

schemata
2N 3N

4N
5N 6N

7N 8N

68

4. If the number of entries of a node exceeds M (the
maximum number of lower level schemata that a
merger schema can have), then the entries of this node
are split into two disjoin groups. The splitting may be
accomplished by utilising a partitioning algorithm
(agglomerative or divisive), that breaks the set of
entries into two groups so that entries within the group
are close (similar) to each other and entries of
different groups are dissimilar. Splits may propagate
up to the root as far as the splitting in lower level
makes nodes in higher levels to overflow. Splits are
handled in a similar way as in B-tree. This splitting
operation is used to keep the XSD structure balanced
and it is done for performance purposes.

Deletion: deletes an existing basic schema S from the XSD
structure whose root is T: Delete (T, S).

For all the ancestors X of the leaf basic schema invoke
Separate (X, S). That is, the leaf schema contribution to
merger schemata all the way up to the root is removed.
This operation may cause underflow on the parent node of
the leaf schema when the number of entries becomes less
than m (the smallest number of entries that can be
accommodated by a merger schema). In that case a new
Merge operation between the parent node entries may be
performed. In order to make sure that the number of
children of any merger schema is between m and M,
merging due to deletion may propagate up to the root.
There are also two other operations, which are used in the
XSD structure. These operations are used to disassociate
and associate XML documents with an existing leaf
schema. However, these operations are trivial and can be
realised by deleting or adding respectively a new reference
to the corresponding leaf node of which, the XML
document is an instance.

6 Query evaluation through XSD
An XML query is evaluated by searching for XML

schemata that match the query. The matching of a query
against an XML schema is accomplished as it has been
already described in example 1. The search algorithm for
finding relative XML schemata in the repository and
eventually parsing all the XML documents that are derived
from these schemata is called Match and it is described as
follows:

Match algorithm objective: Given a path query Q and a
XSD structure, whose root is T, find all XML documents
that match the query. Match (T, Q) will return all XML
documents in XSD structure, which are relevant (match) to
the query Q. This is accomplished according to the
following steps.

1. If T is not a leaf, check each entry of T. For each entry
C of T that matches the query, invoke Match(X(c), Q),
where X(c) is the pointer from C to a child node.

2. If T is a leaf, check if Q matches any entry of T and if
so, then return the pointers (or reference IDs) to the
XML documents that are instances of those entries of
T that match the query Q.

The Match algorithm starts from the root and move
towards the leafs by matching the query with the
intermediate merger schemata. All the nodes from the root
to the desired leaf schemata (those that match the query)
are visited and need to be searched. In that way, the
exhaustive matching is avoided and eventually only
relevant schemata to the query are searched. This limits
the number of searching steps and on the other hand it
returns exactly those XML documents that are relevant to
the query. This has as a consequence, no unrelated
document to be returned (100% precision) and all of the
related documents to be considered in the result set (100%
recall). The effectiveness obtained by using XSD structure
is ideal in terms of precision and recall. Moreover, the
searching space is limited and eventually the relevant
XML documents are retrieved quickly avoiding exhaustive
searching.

7 Conclusions
The advantages of the XSD scheme are as follows:
1. There is no need to parse non-relevant documents.

This results in executing XML queries faster since the
search space is limited only to the relevant XML
documents.

2. The accuracy in answering XML queries is high. The
result set is exactly the same as the one that would be
obtained through exhaustive searching if the proposed
XSD structure were not used.

3. Maintaining the XSD structure is not difficult since
new XML schemata may be added or old ones deleted
without performing time-consuming operations that
requires reorganization of the whole XSD structure.

The proposed method for organizing XML schemata to
accelerate query processing is indeed promising. However,
further work is needed towards constructing a XSD based
management system for making performance
measurements. Such a system is under way and future
work is planed based on measuring the behavior of the
system in practice by considering a real XML document
collection.

69

References

[1] Serge Abiteboul, Dallan Quass, Jason McHugh, Jennifer
Widom, Janet L. Wiener, "The Lorel query language for
semistructured data", International Journal on Digital
Libraries, Vol. 1 Issue 1 (1997), pp 68-88

[2] Brad Adelberg, "NoDoSE-a tool for semi-automatically
extracting structured and semistructured data from text
documents", In Proceedings of ACM SIGMOD
international conference on Management of data, June 1 -
4, 1998, Seattle, WA USA , Pages 283 - 294

[3] Paolo Atzeni, Giansalvatore Mecca, Paolo Merialdo, "To
Weave the Web", In Proceedings of 23rd International
Conference on Very Large Data Bases VLDB’97, August
25-29, 1997, Athens, Greece, pages 206-215,

[4] Elisa Bertino, Giovana Guerrini, Isabella Merlo and Marco
Mesiti, "An Approach to classify Semi-Structured
Objects", In Proceedings of the 13th European Conference
on Object Oriented Programming (ECOOP’99), Lisbon,
Portugal, June 1999, Rachid Guerraoui (Ed.), LNCS 1628,
pp. 416-440, 1999

[5] Rodrigo A. Botafogo, "Cluster analysis for hypertext
systems", In Proceedings of the sixteenth annual
international ACM SIGIR conference on Research and
Development in Information Retrieval, June 27 - July 1,
1993, Pittsburgh, PA USA, Pages 116 - 125

[6] Peter Bunemanm, "Semistructured data", In Proceedings
of the 16th ACM SIGACT-SIGMOD-SIGART symposium
on Principles of database systems (PODS97), May 11 - 15,
1997, Tucson, AZ USA, Pages 117-121

[7] Peter Buneman, Serge Abiteboul and Dan Suciu, "Data on
the Web:From Relations to Semistructured Data & XML",
Oct. 1999, Morgan Kaufmann

[8] Angela Bonifati, Stefano Ceri, "Comparative Analysis of
Five XML Query Languages", ACM Sigmod Record,
March 2000

[9] Tim Bray, Jean Paoli and C. M. Sperberg-McQueen
"Extensible Markup Language (XML) 1.0", W3C
Recommendation 10-February-1998,
http://www.w3.org/TR/1998/REC-xml-19980210

[10] Douglass R. Cutting, David R. Karger, Jan O. Pedersen and
John W. Tukey, "Scatter/Gather: a cluster-based approach
to browsing large document collections", In Proceedings of
the Fifteenth Annual International ACM SIGIR conference
on Research and development in information retrieval,
June 21 - 24, 1992, Copenhagen Denmark, Pages 318 - 329

[11] David A. Grossman and Ophir Frieder, "Information
Retrieval:Algorithms & Heuristics", 08/1998, Kluwer
Academic.

[12] Roy Goldman, Jason McHugh, Jennifer Widom, "From
Semistructured Data to XML: Migrating the Lore Data
Model and Query Language", In Proceedings of the ACM
International Workshop on the Web and Databases
(WebDB’99), Philadelphia, Pennsylvania, USA, June 3/4,
1999

[13] Sudipto Guha, Rajeev Rastogi and Kyuseok Shim, "CURE:
an efficient clustering algorithm for large databases", In
Proceedings of ACM SIGMOD international conference on
Management of datam, June 1 - 4, 1998, Seattle, WA USA,
Pages 73 - 84

[14] S. Guha, R. Rastogi, and K. Shim, "ROCK: A Robust
Clustering Algorithm for Categorical Attributes", In
Proceedings of IEEE 15th International Conference on
Data Engineering, 23 - 26 March, 1999 Sydney, Australia

[15] Roy Goldman and Jennifer Widom, "DataGuides: Enabling
Query Formulation and Optimazation in Semistructured
Databases", In Proceedings of the 23rd VLDB Conference,
pp. 436-445, Athens, Greece, August 25-29, 1997

[16] Josheph B. Kruskal, "An Overview of sequence
Comparison", In Time Warps, String Edits and
Macromolecules: The Theory and Practice of Sequence
Comparison, edited by David Sankoff and Joseph B.
Kruskal, pp. 1-44, Addison Wesley, 1983

[17] Svetlozar Nestorov, Serge Abiteboul and Rajeev Motwani
"Extracting schema from semistructured data", In
Proceedings of the ACM SIGMOD international
conference on Management of data June 1 - 4, 1998,
Seattle, WA USA, Pages 295 - 306

[18] Y. Papakonstantinou and P. Velikhov, "Enhancing
Semistructured Data Mediators with Document Type
Definitions", In Proceedings IEEE 15th International
Conference on Data Engineering, (ICDE’99) 23 - 26
March, 1999, Sydney, Australia.

[19] Jonathan Robie, Joe Lapp & David Schach, "XML Query
Language (XQL)",In Proceedings of The W3C Query
Languages Workshop (QL’98), Boston, Massachusetts, Dec
3-4, 1998,http://www.w3.org/TandS/QL/QL98/pp/xql.html

[20] Jason Tsong-Li Wang, Xiong Wang, King-Ip Lin, Dennis
Shasha, Bruce A. Shapiro and Kaizhong Zhang,
"Evaluating a class of distance-mapping algorithms for
data mining and clustering", In Proceedings of the fifth
ACM SIGKDD international conference on Knowledge
discovery and data mining August 15 - 18, 1999, San
Diego, CA USA Pages 307 - 311

[21] Oren Zamir and Oren Etzioni, "Web document clustering:
a feasibility demonstration", In Proceedings of the 21st
annual international ACM SIGIR conference on Research
and development in information retrieval, August 24 - 28,
1998, Melbourne Australia , Pages 46 - 54

[22] Tian Zhang, Raghu Ramakrishnan and Miron Livny,
"BIRCH: an efficient data clustering method for very large
databases", In Proceedings of the 1996 ACM SIGMOD
international conference on Management of data June 3 -
6, 1996, Montreal Canada, Pages 103 - 114

[23] Kaizhong Zhang and Dennis Shasha, "Simple Fast
Algorithms for the Editing Distance Between Trees and
Related Problems", SIAM Journal on Computing Vol. 18,
No. 6, pp. 1245-1262, December 1989.

